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Loss of Plasticity in the D2-Accumbens Pallidal Pathway
Promotes Cocaine Seeking
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Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accum-
bens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend
D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found
that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and
D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons
blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs. Because D1- and D2-MSNs inner-
vate overlapping populations of ventral pallidal neurons, we next used optogenetics to examine whether changes in synaptic plasticity in
D1- versus D2-MSN GABAergic synapses in the ventral pallidum could explain the differential regulation of VP activity. In mice trained
to self-administer cocaine, GABAergic LTD was abolished in D2-, but not in D1-MSN synapses. A � opioid receptor antagonist restored
GABA currents in D2-, but not D1-MSN synapses of cocaine-trained mice, indicating that increased enkephalin tone on presynaptic �
opioid receptors was responsible for occluding the LTD. These results identify a behavioral function for D1-MSN innervation of the
ventral pallidum, and suggest that losing LTDGABA in D2-MSN, but not D1-MSN input to ventral pallidum may promote cue-induced
reinstatement of cocaine-seeking.
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Introduction
The striatum is composed of D1- and D2-dopamine receptor-
expressing medium spiny neurons (D1- and D2-MSNs) that

canonically project through distinct circuits. Thus, D1-MSNs in-
nervate the ventral mesencephalon via the “direct” pathway and
D2-MSNs innervate the globus pallidus via the “indirect” path-
way (Gerfen and Surmeier, 2011). Contrasting this view, the
nucleus accumbens, which occupies the ventromedial quadrant
of the rodent striatum (Zahm and Heimer, 1988), has abundant
D1- and D2-MSN innervation of the ventral portion of the globus
pallidus, the ventral pallidum (VP) (Lu et al., 1998; Kupchik et al.,
2015).

The nucleus accumbens and its projection to the VP regulates
the expression of behavioral responding to motivationally rele-
vant stimuli, including addictive drugs (Koob and Volkow, 2010;
Floresco, 2015; Laurent et al., 2015), and the advent of D1- and
D2-Cre transgenic mice has allowed investigators to selectively
probe the role of D1- and D2-MSNs in regulating behavior (Lobo
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Significance Statement

More than 90% of ventral striatum is composed of two cell types, those expressing dopamine D1 or D2 receptors, which exert
opposing roles on motivated behavior. Both cell types send GABAergic projections to the ventral pallidum and were found to
differentially promote cue-induced reinstatement of cocaine seeking via the ventral pallidum. Furthermore, after cocaine self-
administration, synaptic plasticity was selectively lost in D2, but not D1 inputs to the ventral pallidum. The selective impairment
in D2 afferents may promote the influence of D1 inputs to drive relapse to cocaine seeking.
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and Nestler, 2011; Kravitz et al., 2012; Britt and Bonci, 2013).
Activating D1-MSNs promotes the execution of motivated be-
haviors, such as sucrose consumption and use of addictive drugs,
whereas stimulating D2-MSNs has the opposite effect (Lobo et
al., 2010; Bock et al., 2013; Francis et al., 2015). Also, cocaine
exposure increases the strength of synaptic inputs onto D1-
MSNs, which has been linked to enhanced motivation to use and
seek cocaine (Pascoli et al., 2011, 2014; Bock et al., 2013). These
studies in transgenic mice are generally interpreted to indicate
distinct behavioral functions for D1-MSN direct projections to
the ventral mesencephalon and the D2-MSN indirect projections
to the VP. However, because both D1- and D2-MSNs strongly
innervate the VP, we hypothesized that cue-induced cocaine
seeking is regulated by both D1- and D2-MSN innervation of the
VP. To test this hypothesis, we used a chemogenetic strategy
using designer receptors exclusively activated by designer drugs
(DREADDs) coupled to either Gs (rM3D) or Gi (hM4D), to
mimic the G-protein signaling of dopamine onto D1- or D2-
receptors, respectively (Armbruster et al., 2007; Farrell et al.,
2013; Goto et al., 2015; Roth, 2016). To test the propensity of
discrete stimuli to elicit drug seeking behavior, we used a mouse
model of cocaine self-administration and extinction where the
animal can press a lever to obtain an intravenous delivery of drug
over the course of multiple days, after which this behavior is
extinguished in subsequent sessions without drug availability. In
this model, returning drug-paired cues to each lever press rein-
vigorates drug-seeking behavior (Fuchs et al., 2003; Panlilio and
Goldberg, 2007). Combining these methods, we found that both
the D1 and D2 inputs to the VP regulate cocaine seeking, with
activity in the D1 pathway facilitating and D2 pathway reducing
cued reinstatement.

Because both D1- and D2-MSN terminals release GABA onto
the same VP neurons (Kupchik et al., 2015), we investigated
whether differences in synaptic plasticity might underlie these
behavioral effects using an optogenetic strategy in D1- and D2-
Cre mice. After extinction of cocaine self-administration, there
was a loss of GABAergic LTD (LTDGABA) in synapses of the D2,
not D1, pathway to the VP, and this loss was likely mediated by
elevated inhibitory tone on presynaptic � opioid receptors (MORs)
on D2 pathway afferents, which occluded the induction of LT-
DGABA. Together, our data show a behavioral function for the D1
pathway to the VP, and that impaired synaptic plasticity in D2
pathway synapses may predispose toward enhanced reinstate-
ment of cocaine seeking via the D1-MSN innervation of the VP.

Materials and Methods
Animals. D1- and D2-Cre BAC transgenic lines were obtained from N.
Heintz, P. Greengard (Rockefeller University), C. Gerfen (National In-
stitute of Mental Health), and NINDS/GENSAT (www.gensat.org).
These transgenic mice express Cre recombinase under control of the
dopamine D1 receptor promoter (Drd1a, line FK150, RRID:MMRRC_
029178-UCD) or dopamine D2 receptor promoter (Drd2, line ER44,
RRID:MMRRC_017263-UCD). Mice were bred in house and periodi-
cally outbred with wild-type C57BL/6J (The Jackson Laboratory). Before
experimental procedures, mice were group housed, fed ad libitum, and
maintained in a humidity- and temperature-controlled environment. All
experiments occurred during the dark phase and were conducted in
accordance with the National Institute of Health’s Guidelines for the care
and use of laboratory animals. All procedures were approved by the Insti-
tutional Animal Care and Use Committee at the Medical University of
South Carolina.

Surgery. Mice (20 –30 g) of either sex were anesthetized with isoflurane
(induction 3%–5% v/v, maintenance 1%–2% v/v) and implanted with

an indwelling jugular catheter connected to a head-mounted entry port
as described previously (Griffin and Middaugh, 2003). In brief, the neck
of the mouse was incised and the tip of the catheter was inserted �5 mm
from the clavicle between 10 and 12 mm into the vein. The catheter was
sutured in place, and the entry port was secured to the head of the mouse
using dental cement. Cephazolin (200 mg/kg, i.v.) was administered
acutely to prevent infection, and carprofen (5 mg/kg, s.c.) and topical
antibacterial ointment were given postoperatively for 2–3 d following
surgery. Catheters were flushed twice daily with heparinized (100 units/
ml) normal saline.

For viral microinfusions, microinjection needles (33 Ga; Plastics One)
were connected to a microinjection pump and injections (300 nl) were
delivered at a rate of 50 nl/min. Afterward injectors were left in place for
10 min to allow for diffusion of the virus and then slowly retracted. To
achieve cell-type specific expression, double-floxed inverted orientation
(DIO) transgenes were introduced into Cre recombinase-expressing
neurons using AAV viral vectors (AAV2-hSyn-DIO-hM4D-mCherry;
titer �4.6 � 10 12; AAV2-hSyn-DIO-rM3D-mCherry, titer �6.5 � 10 12;
AAV2-EF1a-hChR2(H134R)-eYFP, titer �6.0 � 10 12) infused in the
nucleus accumbens (in mm from bregma: anteroposterior: 1.5; medio-
lateral: �1.2; dorsoventral: �4.4). Additionally, a nonfloxed vector was
infused into the VP (in mm from bregma: anteroposterior: 0.2; medio-
lateral: 1.5; dorsoventral: �4.9; AAV2-hSyn-HA-hM4D-IRES-mCitrine,
titer �2.6 � 10 12). All vectors were generated by the University of North
Carolina Vector Core. Following surgery, mice were single housed and
given at least 3 d of recovery before the start of behavioral experiments,
and a minimum of 3 weeks was used between surgery and slice electro-
physiology or behavioral testing to allow for expression of viral vectors.

Cocaine self-administration, extinction, and reinstatement. Following
surgery, catheters were maintained by flushing twice daily with heparin-
ized saline throughout the procedure, and catheter patency was checked
at the end of the self-administration phase for all mice by using the
short-acting barbiturate Brevital (0.2 mg i.v.). Mice in which apparent
signs of hypotonia were not observed within 3 s were excluded from the
study. Mice were trained for 10 –15 d on a fixed ratio 1 schedule of
reinforcement during daily 2 h cocaine self-administration sessions until
they reached criterion of at least 3 d of 15 cocaine infusions. During the
first 3- 6 sessions, mice were mildly food restrained (to 90%–95% of their
free feeding weight) to stimulate exploration of the operant box. During
each session, presses on the active lever resulted in the infusion of cocaine
(�0.75 mg/kg/infusion, in sterile saline) paired with a compound stim-
ulus (2 s tone � light), followed by a 20 s time-out period during which
cocaine was unavailable. Yoked saline control mice received saline infu-
sions and cue presentations in the same manner, independent of their
own lever responding. Following self-administration, mice were extin-
guished for at least 10 d until criterion was reached (2 successive days
�20 active lever presses/d) and given cue-induced reinstatement tests in
counterbalanced order with at least 2 d of extinction training in between.
Before each test mice were injected with CNO (1 mg/kg, i.p., Tocris
Bioscience , #4936) or vehicle (sterile saline) and returned to their home-
cage for 30 min. Cue-induced reinstatement tests lasted 2 h and respond-
ing on the active lever produced the tone � light cue previously paired
with cocaine on the same 20 s fixed interval time-out schedule. After
self-administration, mice for electrophysiological experiments were run
for at least 10 daily extinction session, and recordings were performed
24 h after the last session

Sucrose self-administration, extinction, and reinstatement. Following
stereotaxic surgery, mice were mildly food deprived (�90%–95% of free
feeding weight) and trained to self-administer sucrose pellets (14 mg,
BioServ) on a fixed ratio 1 schedule of reinforcement wherein active lever
pressing resulted in the delivery of a sucrose pellet in a food receptacle
and presentation of the same compound (light � tone) cue as for the
cocaine studies. All mice self-administered sucrose for at least 12 d fol-
lowed by 10 d of extinction training. Afterward mice received an injec-
tion of CNO (1 mg/kg, i.p.) or vehicle (sterile saline) and were returned
to their home cage for 30 min before reinstatement testing. During cue-
induced reinstatement, active lever presses resulted in the presentation of
the compound stimulus that previously signaled sucrose delivery. Dur-
ing cue- and pellet-primed reinstatement in the first 10 min of the ses-
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sion, every 2 min a pellet was delivered noncontingently, followed by
another noncontingent pellet delivered every 20 min during the rest of
the session.

Slice preparation and whole-cell patch-clamp recording. Fresh VP slices
(220 �m; VT1200S Leica vibratome) were collected into a vial containing
aCSF as follows (in mM: 126 NaCl, 1.4 NaH2PO4, 25 NaHCO3, 11 glu-
cose, 1.2 MgCl2, 2.4 CaCl2, 2.5 KCl, 2.0 sodium pyruvate, 0.4 ascorbic
acid, bubbled with 95% O2 and 5% CO2) and a mixture of 5 mM

kynurenic acid and 50 �M D-APV. Slices were kept at 22°C–24°C until
they were used for recordings, and were constantly perfused with
oxygenated aCSF heated to 32°C (TC-344B, Warner Instruments).
Excitatory synaptic transmission was blocked with 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX; 10 �M). Neurons were visualized
with a Zeiss Axioscope 2 FS plus microscope with a 40 � objective.
Recordings of synaptic currents were performed in voltage-clamp con-
figuration at a membrane potential of �80 mV (Multiclamp 700B, Mo-
lecular Devices). Glass microelectrodes (1.5–2.5 M� tip resistance) were
prepared using a PC-10 vertical puller (Narishige) and filled with internal
solution as follows (in mM: 68 KCl, 65 D-gluconic acid potassium salt, 7.5
HEPES potassium, 1 EGTA, 1.25 MgCl2, 10 NaCl, 2.0 MgATP, and 0.4
NaGTP; pH 7.2–7.3, 275 mOsm). Data were acquired at 10 kHz and
filtered at 2 kHz using Axograph X software (Axograph Scientific). IPSCs
were evoked optogenetically, and the stimulation intensity was set to
evoke an IPSC with amplitudes within the dynamic range of each neuron
(i.e., 30%–70% of maximal IPSCs, 200 –900 pA). The light pulse was
produced by a 460 nm LED (Mightex) that was transmitted on the slice
through the microscope objective. For the LTD experiments, a high-
frequency stimulation (HFS) protocol was delivered electrically via a
bipolar stimulation electrode positioned 200 –300 �m dorsomedial to
the recorded cell. The HFS protocol consisted of three trains separated by
20 s, each delivering 100 stimulations at 100 Hz. The intensity (100 – 600
�A) was set to elicit IPSCs of the same amplitude as for optically induced
IPSCs from each neuron. Recordings of synaptic transmission were
started 10 min after invading the cell to allow for internal solution diffusion
to remote dendrites. Membrane capacitance and input resistance were cal-
culated automatically from a �2 mV pulse (Axograph X software, Axograph
Scientific). Recordings with unstable series resistance or with a series resis-
tance 	20 M� were discarded.

Histology. Mice were transcardially perfused with ice-cold phosphate buf-
fer (0.1 M, pH 7.4), followed by 4% PFA solution. After extraction, brains
were postfixed in 4% PFA solution overnight and then transferred to 20%
sucrose in PBS for an additional 24 h. Brains were frozen on dry ice and sliced
on a microtome at 35 �m. Slices were blocked in PBS containing 5% normal
goat serum, 2.5% BSA, and 0.25–0.5% Triton X-100, and incubated in
primary antibody overnight (mouse anti-NeuN 1:1000, Millipore
#MAB377, RRID:AB_2298772; rabbit anti-dsRed, 1:1000, Clontech
#632496, RRID:AB_10013483; rabbit anti-DARPP-32, 1:1000, Abcam
#ab18551, RRID:AB_2284277; chicken anti-GFP, 1:500, Abcam #ab13970,
RRID:AB_300798; rabbit anti-metenkephalin, 1:1000, Immunostar #20065,
RRID:AB_572250) followed by 2 h incubation at room temperature in
Alexa-conjugated secondary antibodies (Thermo Fisher, 1:1000). Im-
ages were acquired as stacks using a SP6 confocal microscope (Leica
Microsystems), deconvolved (AutoQuant X2, MediaCybernetics),
and visualized in Imaris (Bitplane).

Statistical analysis. All data are represented as mean � SEM. Statistical
analyses were performed using Prism version 6.0 (GraphPad). Two-way
repeated-measures ANOVA, one-way ANOVA, and paired and unpaired
Student’s t tests were used for electrophysiological and behavioral data as
specified in Results. One-sample t test was used for normalized IPSC
comparisons. Statistical significance was set at 0.05.

Results
Cocaine self-administration and functional expression of
genetic constructs in D1- and D2-Cre mice
D1- and D2-Cre mice underwent 12 d of cocaine self-admi-
nistration or yoked-saline delivery followed by at least 10 d of
extinction training (2 h each day; Fig. 1A). Infusion of cocaine
was paired with the presentation of a compound light/tone cue.
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There was no difference in lever pressing between the two trans-
genic mouse strains and both strains distinguished between the
active and inactive lever after 3 d of self-administration (Fig. 1A).
Both strains showed a marked extinction burst, evidenced by an
increase in active lever pressing during the first extinction session
compared with the average last 3 d of self-administration (Fig.
1A; D1-Cre: t(25) 
 3.681, p 
 0.001; D2-Cre: t(28) 
 4.342, p �
0.001). All mice were microinjected with AAV vectors carrying
transgenes for the DIO Gs-coupled receptor rM3D (Gs-DRE-
ADD; Fig. 1B), and the DIO or nonfloxed Gi-coupled hM4D
receptor (Gi-DREADD; see Figs. 2A, 3A,B, 4B). Alternatively, for
electrophysiological studies mice were infected with an AAV car-
rying a DIO channel rhodopsin (ChR2) (Fig. 2A). Microinjec-
tions were targeted to the nucleus accumbens core adjacent to the
anterior commissure and showed limited spread into the medial
and ventral accumbens shell. Expression of the transgenes was
localized to MSNs as indicated by DARPP-32 counterstaining
(Fig. 1B) (Bertran-Gonzalez et al., 2008).

To demonstrate the efficacy of these genetic reagents in mod-
ulating activity in the accumbens-pallidal pathway, separate
groups of drug-naive D1- and D2-Cre mice were infected with a
combination of DIO Gi-DREADD and ChR2 vectors. Both con-
structs expressed robustly in the D1 and D2 projections to the VP
(Fig. 2A). Optical stimulation (460 nm) evoked eIPSCs in neu-
rons of the dorsolateral VP, and bath application of the Gi-
DREADD ligand CNO (1 �M) abolished these eIPSCs from both
D1 and D2 pathway projections onto VP neurons demonstrating
significant terminal silencing by Gi-DREADD (Fig. 2B; two-way
ANOVA: effect of pathway F(2,12) 
 51.48, p � 0.001, drug F(1,12) 

240.7, p � 0.001, and interaction F(2,12) 
 54.09, p � 0.001).

Activating D1-MSNs augmented reinstatement of cocaine
seeking via projections to the VP
Activation of D1-MSNs potentiates the execution of motivated
behaviors, whereas activation of D2-MSNs reduces them (Lobo
and Nestler, 2011; Smith et al., 2013). Dopamine exerts its effects
on D1-MSNs by stimulating the Gs signaling cascade, which en-
hances the excitability of these neurons when in a relatively de-
polarized up state, without directly altering membrane potential
(Surmeier et al., 2007). In line with this, activation of the Gs-
DREADD does not change the resting membrane potential of
infected neurons (Nakajima et al., 2016). The nucleus accumbens
of D1-Cre mice was transduced with the DIO Gs-DREADD
rM3D and the nonfloxed Gi-DREADD hM4D into the VP to
allow simultaneous activation of D1-MSN and inhibition of VP
neurons (Fig. 3A,B). To test the functionality of the Gi-
DREADD in the VP, infected neurons were patched in current
clamp while CNO (1 �M) was bath applied to measure changes in
membrane potential. CNO significantly hyperpolarized VP neu-
rons infected with the Gi-DREADD (Fig. 3C; �Vm mean � SEM:
�4.03 � 1.44; t(7) 
 2.80, p 
 0.027 comparing min 1–5 with
baseline). Activating D1-MSNs with the Gs-DREADD during
cue-induced reinstatement increased cocaine seeking (Fig. 3D,E),
and this was reversed by the simultaneous inhibition of VP neu-
rons with Gi-DREADD (one-way ANOVA: F(2,19) 
 5.48, p 

0.013). In contrast, activating D2-MSNs in D2-Cre mice infected
with Gs-DREADD using CNO did not reveal any effect during
cue-induced reinstatement (Fig. 3F,G; t(6) 
 0.834, p 
 0.436).
These data demonstrate that activating D1-MSNs is sufficient
to potentiate cocaine seeking, most likely via their projections
to the VP.
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Inhibiting D2-MSNs augmented reinstatement of cocaine
seeking via projections to the VP
D2-Cre mice were injected with the inhibitory DIO Gi-DREADD
targeted to the nucleus accumbens core and trained to self-
administer cocaine. In addition, some D2-Cre mice received a
second microinjection with nonfloxed Gi-DREADD in the VP
(Fig. 4A,B). Following cocaine self-administration and extinc-
tion, mice underwent a test for cue-induced reinstatement after
pretreatment with either vehicle or CNO (1 mg/kg, i.p.). Inhibi-
tion of D2-MSNs with the Gi-DREADD augmented cue-induced
reinstatement (Fig. 4C,D). The augmented cocaine seeking was
reversed by simultaneous inhibition of neurons in the VP with
the Gi-DREADD (one-way ANOVA: F(2,19) 
 15.71; p � 0.001).
In contrast, inhibiting D1-MSNs did not affect cue-induced co-
caine seeking (t(5) 
 1.106, p 
 0.319; Fig. 4E,F). These data
show that inhibiting D2-MSNs potentiates reinstatement, which
depends on the D2 projection to the VP.

Activating D1-MSNs did not alter reinstatement of
sucrose seeking
In addition to its critical role in drug seeking, the accumbens core
is also involved in food seeking behavior (Peters and Kalivas,
2006; Floresco et al., 2008), and sucrose consumption (Francis et
al., 2015). These studies suggest that the bidirectional effect of
D1- versus D2-MSNs extends to non– drug-related motivated
behaviors. We explored the generalizability of our findings to
food reward by chemogenetically activating D1- and D2-MSNs
transfected with the DIO Gs-DREADD during the reinstatement
of sucrose seeking. Following sucrose self-administration and ex-
tinction, in a manner analogous to that of cocaine (Fig. 5A,C),
mice were pretreated with CNO or vehicle, and tested for cue-
induced reinstatement of sucrose seeking. In contrast with
cocaine-seeking, no effects of CNO were observed in either
D1-Cre mice (Fig. 5B; t(10) 
 0.58, p 
 0.572) or D2-Cre mice
(Fig. 5D; t(10) 
 0.250, p 
 0.811). This was surprising given the
studies showing that selective D1-MSN stimulation reinforces
behavior (Lobo et al., 2010; Ferguson et al., 2011; Kravitz et al.,
2012), and indicates that while the cue-cocaine association can be
regulated by accumbens D1- and D2-MSNs, the cue-sucrose as-
sociation might be independent of the accumbens. One possibil-
ity is that previous studies showing a role for the accumbens used
food, not food-paired conditioned cues to motivate animals. To
explore the possibility that food availability is critical, D1-Cre
mice infected with DIO Gs-DREADD were re-extinguished for at
least 2 d after the cue-induced reinstatement session and tested
for reinstatement elicited by both cues and noncontingent su-
crose delivery. Under these conditions, a marked potentiation of
reinstatement by CNO was evident (Fig. 5B; t(9) 
 3.352, p 

0.009). In D2-Cre mice infected with DIO Gs-DREADD, CNO
did not potentiate reinstatement induced by both cues and su-
crose pellets (Fig. 5D; t(6) 
 0.721, p 
 0.498).

Cocaine self-administration selectively altered synaptic
plasticity in the D2 pathway while sparing plasticity in the D1
pathway to the VP
Both D1- and D2-MSN projections from the nucleus accumbens
core robustly innervate the VP (Lu et al., 1998; Francis et al.,
2015), and at least 50% of dorsolateral VP neurons are innervated
by both MSNs (Kupchik et al., 2015). Because activity in VP
neurons was necessary for the chemogenetic regulation of co-
caine seeking in both D1- and D2-Cre mice, we next investigated
how parallel innervation of the VP by distinct D1- and D2-MSNs
could contribute to cocaine seeking. We postulated that cocaine

self-administration might differentially alter GABAergic synaptic
transmission in these pathways in a manner that facilitates rein-
stated behavior. To evaluate the synaptic physiology of the D1
and D2 pathways to the VP, D1- and D2-Cre mice received mi-
croinjections into the nucleus accumbens core with an AAV the
DIO ChR2 transgene (Kupchik et al., 2015), resulting in the la-
beling of ChR2-expressing terminals in the VP (Fig. 2A). Follow-
ing cocaine self-administration and extinction, whole-cell patch
recordings were obtained from dorsolateral VP neurons, and
GABAergic eIPSCs were evoked by application of blue light
pulses (0.5–1 ms duration) (Fig. 6A,B). Using an electrical HFS
protocol previously shown to induce LTDGABA in the accumbens-
pallidal pathway in rats (Kupchik et al., 2014), we induced
LTDGABA in synapses from both the D1 and D2 pathway onto VP
neurons of yoked saline (D1: n 
 7; D2: n 
 8) and drug-naive
(D1: n 
 2; D2: n 
 1) mice. No differences were observed
between these two groups; data were thus pooled for analyses.
The HFS protocol induced LTDGABA (Fig. 6C; two-way ANOVA:
effect of time F(19,304) 
 2.97, p � 0.001), and no differences were
observed between LTDGABA in D1 and D2 pathway eIPSCs. Com-
paring baseline to the average eIPSC over 6–15 min after inducing
LTDGABA revealed significant LTD in both D1 (t(8) 
 2.82, p 

0.023) and D2 pathways (Fig. 6D; t(8) 
3.47, p
0.008). By contrast,
in VP neurons from cocaine self-administering and extinguished
mice, HFS failed to induce LTDGABA in the D2 pathway (Fig. 6F;
two-way ANOVA: effect of pathway F(1,11) 
 12.83, p 
 0.004,
and interaction F(19,209) 
 2.925, p � 0.001, but no effect of time).
Average post-HFS eIPSC amplitude compared with baseline re-
vealed that this effect was specific to the D2 pathway (Fig. 6G;
t(5) 
 3.81, p 
 0.013), whereas LTDGABA in the D1 pathway
remained intact (t(6) 
 1.54, p 
 0.176).

We next assessed the paired pulse ratio (PPR) after LT-
DGABA induction to assess whether this LTDGABA was presyn-
aptic. The PPR was increased for both D1 and D2 pathways in
control mice (Fig. 6E; t(7) 
 2.65, p 
 0.033 and t(8) 
 5.11,
p � 0.001 for D1 and D2 pathway terminals, respectively).
Similarly, in cocaine-extinguished mice, the PPR was in-
creased after inducing LTDGABA in D1-MSNs (Fig. 6H; t(3) 

3.14, p 
 0.025). However, the failure to induce LTDGABA in D2
pathway afferents of cocaine-extinguished mice was associated
with no change in the PPR (Fig. 6H; t(6) 
 1.29, p 
 0.245).
Together, these PPR data indicate that the ability to induce LT-
DGABA is likely due to a decrease in presynaptic transmitter re-
lease probability (Bonci and Williams, 1997).

Persistent activation of MOR accounts for the loss of LTD in
the D2 pathway to the VP
Enkephalin is colocalized with GABA in D2-, but not D1-
expressing, MSNs (Zahm et al., 1985; Lu et al., 1998) and modu-
lates neurotransmission in the accumbens-pallidal pathway
(Chrobak and Napier, 1993). These effects are likely mediated by
presynaptic MOR located on MSN terminals within the VP (Ol-
ive et al., 1997; Kupchik et al., 2014). Consistent with recent
findings that GABAergic synapses in the VP undergo a MOR-
dependent LTD after the electrically stimulated release of en-
kephalin (Kupchik et al., 2014), LTDGABA was blocked in both D1
and D2 pathways to the VP of cocaine-naive mice by bath appli-
cation of the MOR antagonist CTOP (50 nM) (Fig. 7A,B; two-
way ANOVA: no effect of pathway, time, or interaction).
Recordings from both yoked saline (D1: n 
 6, D2: n 
 3) and
naive mice (D1: n 
 3, D2: n 
 3) were pooled for this analysis
because no differences in eIPSCs were observed. Thus, the loss of
LTDGABA in the D2 pathway may result from a persistent increase
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in MOR tone that effectively masks MOR-induced LTD in
cocaine-extinguished mice. Consistent with this, bath applied
CTOP had no effect on the amplitude of D1 or D2 pathway
eIPSCs in the dorsolateral VP of control mice (Fig. 7C,D; two-
way ANOVA: no effect of pathway, time, or interaction), but it
selectively increased the amplitude of D2 pathway, but not D1
pathway eIPSCs in cocaine-extinguished mice (Fig. 7E; two-way
ANOVA: effect of treatment F(1,19) 
 8.276, p � 0.01 and inter-
action F(20,380) 
 2.56, p � 0.001, but no effect of time). Com-
paring baseline to the average of min 6 –15 during CTOP
application showed an increase in eIPSC amplitude selectively in

D2 pathway terminals (Fig. 7F; t(11) 
 3.076, p 
 0.011), but not
in D1 pathway terminals (t(8) 
 0.918, p 
 0.385). These results
suggest that MORs are tonically activated on D2, but not D1,
pathway terminals in the VP of cocaine-extinguished mice.

Discussion
In mice extinguished from cocaine self-administration, chemoge-
netic activation of D1-MSNs or inhibition of D2-MSNs in the nu-
cleus accumbens core increased cue-induced reinstatement of
cocaine seeking. Regardless of which MSN cell type was chemoge-
netically regulated to augment cued reinstatement, output to the
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VP was required because simultaneous inhibition of VP neu-
rons prevented reinstatement. We hypothesized that GABAe-
rgic transmission and plasticity in one or both of these pathways
to the VP would be altered by cocaine self-administration. In-
deed, the ability to induce LTDGABA in dorsolateral VP neurons
was abolished in the D2 pathway after cocaine, whereas LTDGABA

was spared at D1 synapses. LTDGABA in both accumbens-pallidal

projections was presynaptic and depended on MORs because
CTOP blocked LTDGABA in either the D1 or D2 pathway of control
mice. However, cocaine use masked this plasticity by increasing en-
dogenous MOR tone specifically on D2-MSN terminals because
CTOP restored GABAergic currents in this pathway. These data
indicate that D1- and D2-MSNs bidirectionally regulate cocaine
seeking through projections to the VP, and that increased MOR
tone decreases D2 pathway GABA transmission in the VP, thus
shifting the inherent balance of the circuit in favor of the D1
pathway to facilitate cocaine seeking.

Differential roles for D1- and D2-MSNs in relapse to
drug seeking
Multiple studies reveal opposing roles for D1- and D2-MSNs in
cocaine-related behavior (Lobo et al., 2010; Bock et al., 2013;
Pascoli et al., 2014). For instance, D2-MSNs display reduced ac-
tivity during expression of a cocaine conditioned place prefer-
ence, whereas D1-MSN activity increases immediately before
entry into a cocaine-paired compartment (Calipari et al., 2016).
In line with these studies, we found that activating D1-MSNs
increased cue-induced cocaine seeking. In addition to the dorso-
lateral VP, accumbens core D1-MSNs project to substantia nigra,
and neither pharmacological nor optogenetic silencing of this D1
pathway affected on cocaine seeking (McFarland and Kalivas,
2001; Stefanik et al., 2013). Although systemic activation of
DREADDs in multiple brain regions is not conclusive evidence of
a monosynaptic pathway between D1-MSNs or D2-MSNs and
the VP in driving drug seeking, it shows that the VP is a critical
downstream mediator.

Our finding that inhibiting D2-MSNs also increased drug
seeking in a VP-dependent manner is consistent with a previous
study showing that synaptic strength onto D2-MSNs is inversely
correlated with cocaine use and inhibiting D2-MSNs increases
the motivation to take cocaine (Bock et al., 2013). Thus, D2-
MSNs suppress cocaine seeking, and reducing activity of these
cells predisposes animals to increase responding for drugs and
drug-associated cues. D2-MSNs also evaluate proper response
strategies (Zalocusky et al., 2016) and guide flexible behavior
(Yawata et al., 2012). Thus, inhibiting their activity may render
animals less prone to change their response strategy despite
changes in reward contingencies.

Chemogenetic activation of Gs-coupled signaling in D1-
MSNs and Gi-signaling on D2-MSNs mimics the effects of dopa-
mine onto these neurons. Dopamine is released into accumbens
core during conditioned cue presentation in abstinent cocaine
self-administering animals (Phillips et al., 2003) and is necessary
for cue-induced cocaine seeking in sign-tracking animals (Saun-
ders et al., 2013). Although systemic D2 receptor agonists and
intra-accumbens shell microinjections of D1 or D2 receptor ago-
nists reinstates cocaine seeking (Self et al., 1996; De Vries et al.,
2002; Schmidt et al., 2006), microinjecting a D1/D2-receptor an-
tagonist or selective D1/D2-receptor agonists into the accumbens
core does not reduce or increase, respectively, reinstated cocaine
seeking (McFarland and Kalivas, 2001; Schmidt et al., 2006).
Thus, dopamine likely facilitates reinstatement only in conjunc-
tion with circuit activity in glutamatergic accumbens core affer-
ents, as evidenced by D1 receptor signaling facilitating MSN
activity only when the cells are in a depolarized state (Surmeier et
al., 2007).

Opposing cocaine-induced adaptations in D1- and D2-MSNs
Confirming previous studies, we demonstrated that cocaine
changes MOR regulation of GABAergic transmission in the VP
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(Tang et al., 2005; Kupchik et al., 2014). Although only D2-MSNs
release enkephalin in the VP, both D1 and D2 synapses demon-
strated MOR-dependent LTDGABA in control mice. This may be
caused by the spillover of enkephalin from D2-MSN terminals
after the HFS protocol used to induce LTDGABA, thus reflecting
heterosynaptic plasticity. However, enkephalin exerts greater
tonic presynaptic inhibition on D2-MSN terminals after cocaine
use because CTOP only increased eIPSC amplitude in D2, not
D1, pathway synapses. Thus, homosynaptic tonic stimulation of
presynaptic MORs on D2-MSN terminals occurs in the VP after
cocaine use, and this occludes LTD selectively in D2-MSN syn-
apses. These findings demonstrate cell-type specificity of MOR
plasticity in the accumbens-pallidal pathway and add to a grow-
ing literature on MOR-dependent LTD in various neural systems
(Wamsteeker Cusulin et al., 2013; Atwood et al., 2014).

A recent study found that repeated cocaine injections change
plasticity in both D1- and D2-MSN projections to the ventrome-
dial VP (Creed et al., 2016). Although a similar loss of LTD in the
D2 pathway was observed, a striking loss of LTP was found for
the D1 projection. This bidirectional loss of plasticity in the D1
and D2 pathways was associated with cocaine-induced sensitiza-
tion and withdrawal-induced anhedonia, respectively. Moreover,
D2 pathway plasticity was mediated by presynaptic � opioid re-
ceptors. The distinctions between our studies may arise because
we electrically stimulated the entire projection to induce plastic-
ity and then optogenetically interrogated the circuit for D1- and
D2-MSN involvement, whereas Creed et al. (2016) both induced
plasticity and interrogated the circuit selectively stimulating D1-
and D2-MSN afferents. Also, our studies examined two distinct
subcircuits. Although only �50% of dorsolateral VP neurons are
functionally innervated by D1-MSNs (Kupchik et al., 2015), ap-
parently nearly all ventromedial VP neurons receive D1-MSN
innervation from accumbens shell (Creed et al., 2016). Also, al-
though Creed et al. (2016) focused exclusively on ventromedial
VP neurons projecting to the VTA, our recordings did not
discriminate among dorsolateral VP neurons, and the different
topographies of the dorsolateral and ventromedial VP efferent
projections indicate the two studies recorded from largely non-
overlapping circuits (Zahm, 1989; Bell et al., 1995).

Collectively, these findings indicate that cocaine use reorga-
nizes the balance between D1- and D2-MSN inputs to VP by
enhancing enkephalin tone on D2 pathway synapses. The shift in
balance of accumbens-pallidal output in favor of the D1 pathway
is parsimonious with electrophysiological studies showing over-
all strengthened glutamatergic inputs onto accumbens D1-MSNs
after contingent (Bock et al., 2013; Pascoli et al., 2014) and non-
contingent cocaine or heroin exposure (Pascoli et al., 2011;
MacAskill et al., 2014; Hearing et al., 2016), as well as increased
expression of genes involved in synaptic plasticity (e.g., Egr3 and
�FosB) in D1-MSNs and decreased expression in D2-MSNs
(Grueter et al., 2013; Lobo et al., 2013; Chandra et al., 2015).

How can D1 and D2 MSN afferents in the VP produce
bidirectional behavior?
Given that the D1 and D2 pathways are GABAergic and synapse on
substantially overlapping VP neurons (Kupchik et al., 2015), possi-
bly even targeting the same dendritic segment (Pickel et al., 2012), it
is surprising that opposite behaviors are engendered by the two MSN
populations. This indicates a level of nuanced regulation beyond
simple inhibition of VP neurons by GABA released from MSNs.
How both D1 and D2 pathway GABAergic synapses in the VP en-
code opposite behaviors is unknown, but different neuropeptides
coreleased with GABA in D1- versus D2-MSN terminals are likely

candidates in the differential encoding of information between these
pathways. For instance, enkephalin from D2 pathway terminals in-
hibits the presynaptic release of GABA into the VP (Kupchik et al.,
2014), and thereby disinhibits VP neurons to augment cocaine rein-
statement (Tang et al., 2005). Thus, blocking MORs in the VP inhib-
its reinstatement of cocaine and alcohol seeking (Tang et al., 2005;
Perry and McNally, 2013). MOR signaling in the VP also mediates
hedonic responses (Smith and Berridge, 2005), which may contrib-
ute to drug seeking.

Another mechanism by which D1- and D2-MSN inputs to the
VP could elicit opposite effects on cocaine seeking is through
targeting VP neurons that project to different downstream areas,
such as the medial thalamus and ventral mesencephalon (Haber
et al., 1985; Groenewegen et al., 1993; Tripathi et al., 2013).
However, dorsolateral VP neurons retrogradely labeled from
these two major output structures did not respond differently to
D1- and D2-MSN input (Kupchik et al., 2015).

A final possibility is that D1 and D2 pathways project to dif-
ferent neuronal subtypes in the VP. A proportion of VP cells are
glutamatergic, which could drive opposite downstream effects
from those elicited by GABAergic neurons. For example, the pro-
jection from ventromedial VP to the ventral tegmental area con-
tains both GABAergic and glutamatergic efferents and is critical
for cocaine seeking (Geisler et al., 2007; Mahler et al., 2014).
Thus, the heterogeneous firing patterns observed in VP neurons
during cocaine seeking may arise from heterogeneity in neuronal
subtypes and subpopulations (Root et al., 2013).

In conclusion, our results demonstrate of a functional role for
D1- and D2-MSN projections from the nucleus accumbens to the
VP in cue-induced reinstatement of cocaine seeking, and show a
differential loss of synaptic plasticity in D2 versus D1 pathways to
the VP after cocaine self-administration. These data set the stage
for future studies addressing the cell type-specific circuitry of the
D1 and D2 pathways to the VP in the regulation of drug seeking.
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